Color

Maneesh Agrawala

CS 448B: Visuclization

Fall 2021

1

Reading Response Questions/Thoughts

How does change blindness apply to interactive charts and how should we design around it?

Is it feasible to make creating robust and highly customizable visual explainers easier for less technical users?

Why are these kind of "bad" visuals are justified in the talk by placing the context in a more specific community when the accessibility for those communities is not inherently better based on format?

When deciding which data should be encoded in which channels: should the most important data be noticed first, or noticed the most accurately?

Last Time: Visual Explainers Chart Sequences

3

Multiple Charts in Data Analysis

Multiple Charts in Storytelling

5

Chart Sequence Design

Can we automatically identify sequences to recommend to a human designer?

order, interactions

GraphScape: A Directed Graph Model

Nodes are Vega-Lite specifications. Edges represent edit operations, weighted by estimated transition costs.

7

Constructing the Graph

which chart is easier to follow?

9

Sequence Recommendation

Previously we've discussed approaches for automatic design of a single visualization (e.g. Mackinlay's APT)

GraphScape supports automated design methods for collections of visualizations.

Plenty of future work to do here!

Summary

Narrative visualizations blend communication via imagery and text with interaction techniques

Specific strategies can be identified by studying what expert designers make

Automating construction of effective explainers is an active area of Visualization research

Announcements

Assignment 3: Dynamic Queries

Create a small interactive dynamic query application similar to Homefiner, but for restaurants data.

1. Implement interface
2. Submit the application and a short write-up on canvas

Can work alone or in pairs
Due before class on Oct 25, 2021

Final project

Data analysis/explainer or conduct research

- Data analysis: Analyze dataset in depth \& make a visual explainer
- Research: Pose problem, Implement creative solution

Deliverables

- Data analysis/explainer: Article with multiple different interactive visualizations
- Research: Implementation of solution and web-based demo if possible
- Short video (2 $\mathbf{~ m i n}$) demoing and explaining the project

Schedule

- Project proposal: Wed 11/3
- Design Review and Feedback: $10^{\text {th }}$ week of quarter
- Final code and video: Fri 12/10 11:59pm

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

17

Purpose of Color

To label
To measure
To represent and imitate
To enliven and decorate

"Above all, do no harm."

- Edward Tufte

Color Perception
 Physical World, Visual System, Mental Models

What color is this?

What color is this?

"Yellow"

What color is this?

What color is this?

"Blue"

25

What color is this?

What color is this?

27

Physicist's view

Light as electromagnetic wave
Energy or "Relative power" across visible spectrum of wavelengths

Wavelength (nm)

Emissive vs. reflective light

Additive
(digital displays)

Subtractive
(print, e-paper)

37

Retina

Simple Anatomy of the Retina, Helga Kolb

As light enters our retina...

LMS (Long, Middle, Short) Cones

\square Sensitive to different wavelength

41

As light enters our retinc...

LMS (Long, Middle, Short) Cones
\square Sensitive to different wavelength

- Integration with input stimulus

Effects of Retina Encoding

Spectra that stimulate the same LMS response are indistinguishable (a.k.a. "metamers")

Tri-stimulus response Computer displays Digital scanners Digital cameras

Wavelength ($n \mathrm{~m}$)

CIE XYZ Color Space

Standardized in 1931 to mathematically represent tri-stimulus response
"Standard observer" response curves

49

Color Blindness Simulators

Simulates color vision deficiencies
 - Web service (NoCoffee, SEE, ...)
 - Photoshop plugins available

51

Primary Colors

To paint "all colors":
Leonardo da Vinci, circa 1500 described in his notebooks a list of simple colors...

Yellow
Blue
Green
Red

53

Opponent processing

LMS are linearly combined to create:
Lightness
Red-green contrast
Yellow-blue contrast

Fairchild

Opponent processing

LMS are combined to create: Lightness
Red-green contrast Yellow-blue contrast

Experiments:

No reddish green, no bluish yellow Color after images

59

CIE LUV and LAB color spaces

Standardized in 1976 to mathematically represent opponent processing theory

Axes of CIE LAB

Correspond to opponent signals
L* = Luminance
$\mathbf{a}^{*}=$ Red-green contrast
b* $=$ Yellow-blue contrast
Scaling of axes to represent "color distance" JND = Just noticeable difference (~2.3 units)

Perception of Color

Munsell Aflas

Developed the first perceptual color system based on his experience as an artist (1905)

64

Hue, Value, Chroma

Hue, Value, Chroma

66

Hue, Value, Chroma

Hue, Value, Chroma

68

Percepłual brightness

Luminance \mathbf{Y} (CIE XYZ)

Percepłual brightness

Color palette

Munsell Value
L* (CIE LAB)

71

Psuedo-Percepłual Models

HLS, HSV, HSB
NOT perceptual models Simple re-notation of RGB

- View along gray axis
- See a hue hexagon

\square L or \mathbf{V} is grayscale pixel value
Cannot predict perceived lightness

Percepłual brightness

Color palette

HSL Lightness
(Photoshop)

If we have a perceptually-uniform color space, can we predict how we perceive colors?
"In order to use color effectively it is necessary to recognize that it deceives continually."

- Josef Albers, Interaction of Color

Simultaneous Contrast

Simultaneous Contrast

81

Simultaneous Contrast

Inner and outer thin rings are same purple

Bezold Effect

Color appearance depends on adjacent colors

Crispening

Perceived difference depends on background

From Fairchild, Color Appearance Models

Spreading

Adjacent colors blend

Spatial frequency

- The paint chip problem
- Small text, lines, glyphs
- Image colors

Redrawn from Foundations of Vision © Brian Wandell, Stanford University

Perception of Color

Basic color terms

Chance discovery by Brent Berlin and Paul Kay

97

Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay
Initial study in 1969
Surveyed speakers from 20 languages
Literature from 69 languages

World color survey

99

World color survey

Naming information from 2616 speakers from 110 languages on 330 Munsell color chips

101

Results from WCS (South Pacific)

Results from WCS (Mexico)

Language \#98 (Tlapaneco)
Mutual info $=0.942 /$ Contribution $=0.524$

Universal (?) Basic Color Terms

Basic color terms recur across languages

\square \square RedPinkGrey \square
Yellow \square BrownBlack \square Green

OrangeBlue
Purple

Evolution of Basic Color Terms

Proposed universal evolution across languages

105

Naming affects color perception

Color name boundaries

Green Blue

Rainbow color ramp

We associate and group colors together, often using the name we assign to the colors

Rcinbow color ramp

We associate and group colors together, often using the name we assign to the colors

lcicle tree with rainbow colors

Colors according to XKCD...

Color names if	Color names if
you're a girl...	you're a guy...
Cayenne	Red
Maroon Purple	
Plum	
Eggplant	
Grape	
Orchid	
Lavender	
Carnation	Pink
Strawberry	
BubblegumMagenta	
Salmon	
Tangerine	Orange
Cantaloupe	
Banana	Yellow
Lemon	
Honeydew	Green
Lime \square	
Spring	
Clover	
Fern	
Moss	
Flora	
Sea Foam	
Spindrift \square Blue	
Teal	
Sky	Doghouse Diaries
Turquoise	"We take no as an answer."

Color naming models

[Heer \& Stone 2012]
Model 3 million responses from XKCD survey
Bins in LAB space sized by saliency:
How much do people agree on color name?

Modeled by entropy of p(name | color)

Using Color in Visualization

