

<text><text><text><text>

11

Summary

Narrative visualizations blend communication via imagery and text with interaction techniques

Specific strategies can be identified by studying what expert designers make

Automating construction of effective explainers is an active area of Visualization research

Final project

Data analysis/explainer or conduct research

- **Data analysis**: Analyze dataset in depth & make a visual explainer
- **Research**: Pose problem, Implement creative solution

Deliverables

- Data analysis/explainer: Article with multiple different interactive visualizations
- **Research**: Implementation of solution and web-based demo if possible
- **Short video (2 min)** demoing and explaining the project

Schedule

- Project proposal: Wed 11/3
- Design Review and Feedback: 10th week of quarter
- Final code and video: Fri 12/10 11:59pm

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

<section-header><text><text>

Physicist's view

Light as electromagnetic wave Energy or "Relative power" across visible spectrum of wavelengths

Color Blindness Simulators

Simulates color vision deficiencies

- Web service (NoCoffee, SEE, ...)
- Photoshop plugins available

Axes of CIE LAB

Correspond to opponent signals

- L^{*} = Luminance
- a* = Red-green contrast
- **b*** = Yellow-blue contrast

Scaling of axes to represent "color distance" JND = Just noticeable difference (~2.3 units)

Munsell Atlas

Developed the first perceptual color system based on his experience as an artist (1905)

Psuedo-Perceptual Models

HLS, HSV, HSB NOT perceptual models Simple re-notation of RGB

- View along gray axis
- See a hue hexagon
- L or V is grayscale pixel value

Cannot predict perceived lightness

If we have a perceptually-uniform color space, can we predict how we perceive colors?

"In order to use color effectively it is necessary to recognize that it deceives continually." - Josef Albers, Interaction of Color

Bezold Effect

Color appearance depends on adjacent colors

Basic color terms

Chance discovery by Brent Berlin and Paul Kay

97

Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay

Initial study in 1969 Surveyed speakers from 20 languages Literature from 69 languages

Evolution of Basic Color Terms

Proposed universal evolution across languages

105

